Analysis and prediction of functional sub-types from protein sequence alignments

TitleAnalysis and prediction of functional sub-types from protein sequence alignments
Publication TypeJournal Articles
Year of Publication2000
AuthorsHannenhalli S, Russell RB
JournalJournal of Molecular BiologyJournal of Molecular Biology
Volume303
Type of Article10.1006/jmbi.2000.4036
ISBN Number0022-2836
Keywordsprediction, protein function, protein structure, sequence alignment
Abstract

The increasing number and diversity of protein sequence families requires new methods to define and predict details regarding function. Here, we present a method for analysis and prediction of functional sub-types from multiple protein sequence alignments. Given an alignment and set of proteins grouped into sub-types according to some definition of function, such as enzymatic specificity, the method identifies positions that are indicative of functional differences by comparison of sub-type specific sequence profiles, and analysis of positional entropy in the alignment. Alignment positions with significantly high positional relative entropy correlate with those known to be involved in defining sub-types for nucleotidyl cyclases, protein kinases, lactate/malate dehydrogenases and trypsin-like serine proteases. We highlight new positions for these proteins that suggest additional experiments to elucidate the basis of specificity. The method is also able to predict sub-type for unclassified sequences. We assess several variations on a prediction method, and compare them to simple sequence comparisons. For assessment, we remove close homologues to the sequence for which a prediction is to be made (by a sequence identity above a threshold). This simulates situations where a protein is known to belong to a protein family, but is not a close relative of another protein of known sub-type. Considering the four families above, and a sequence identity threshold of 30 %, our best method gives an accuracy of 96 % compared to 80 % obtained for sequence similarity and 74 % for BLAST. We describe the derivation of a set of sub-type groupings derived from an automated parsing of alignments from PFAM and the SWISSPROT database, and use this to perform a large-scale assessment. The best method gives an average accuracy of 94 % compared to 68 % for sequence similarity and 79 % for BLAST. We discuss implications for experimental design, genome annotation and the prediction of protein function and protein intra-residue distances.