Partial revertants of the transposable element-associated suppressible allele white-apricot in Drosophila melanogaster: structures and responsiveness to genetic modifiers.

TitlePartial revertants of the transposable element-associated suppressible allele white-apricot in Drosophila melanogaster: structures and responsiveness to genetic modifiers.
Publication TypeJournal Articles
Year of Publication1988
AuthorsMount SM, Green MM, Rubin GM
JournalGenetics
Volume118
Issue2
Pagination221-34
Date Published1988 Feb
ISSN0016-6731
KeywordsAlleles, Animals, Base Sequence, DNA Transposable Elements, Drosophila melanogaster, Enhancer Elements, Genetic, GENOTYPE, Molecular Sequence Data, Mutation, Suppression, Genetic
Abstract

The eye color phenotype of white-apricot (wa), a mutant allele of the white locus caused by the insertion of the transposable element copia into a small intron, is suppressed by the extragenic suppressor suppressor-of-white-apricot (su(wa] and enhanced by the extragenic enhancers suppressor-of-forked su(f] and Enhancer-of-white-apricot (E(wa]. Derivatives of wa have been analyzed molecularly and genetically in order to correlate the structure of these derivatives with their response to modifiers. Derivatives in which the copia element is replaced precisely by a solo long terminal repeat (sLTR) were generated in vitro and returned to the germline by P-element mediated transformation; flies carrying this allele within a P transposon show a nearly wild-type phenotype and no response to either su(f) or su(wa). In addition, eleven partial phenotypic revertants of wa were analyzed. Of these, one appears to be a duplication of a large region which includes wa, three are new alleles of su(wa), two are sLTR derivatives whose properties confirm results obtained using transformation, and five are secondary insertions into the copia element within wa. One of these, waR84h, differs from wa by the insertion of the most 3' 83 nucleotides of the I factor. The five insertion derivatives show a variety of phenotypes and modes of interaction with su[f) and su(wa). The eye pigmentation of waR84h is affected by su(f) and E(wa), but not su(wa). These results demonstrate that copia (as opposed to the interruption of white sequences) is essential for the wa phenotype and its response to genetic modifiers, and that there are multiple mechanisms for the alteration of the wa phenotype by modifiers.

Alternate JournalGenetics
PubMed ID2834265
PubMed Central IDPMC1203276